
65C816 STRING MANIPULATION LIBRARY V3 is a collection of 65C816 assembly language
subroutines (aka “functions”) that perform a variety of useful character string operations. The
library source code may be assembled to run as a stand-alone resource (resident in any bank), or
the source code may be included as part of a larger program.

This library is designed to run on any 65C816-based computer system in which the microprocessor
is operated in native mode—emulation mode is not supported. The character strings that the
library is able to manipulate may be located anywhere in memory and may be very large, much
larger than commonly implemented in, for example, microcomputer versions of BASIC.

The library strives to be as transparent as possible to the programs that call its functions. Library
functions require no pre-defined storage—any needed temporary workspace will be allocated from
the hardware stack. Parameters that are required by functions are passed via the stack. The
library is completely self-contained, and will be unaware of the local operating environment,
assuming the latter is correctly structured—discussion on that will follow.

In writing this document, it is assumed you are reasonably conversant with the 65C816 assembly
language, and know how to assemble and link programs from source code. If this is not the case,
then you will need to seek help in utilizing this library—a “how-to” on assembly language
development is well beyond the scope of this document.

Please carefully read this document in its entirety before attempting to use any of this software.
While building and integrating the library is not difficult, some things may not be immediately
obvious. If you have questions that have not been answered by this documentation please visit and
post at http://forum.6502.org. Signing up for an account is free and takes but a few minutes.

This library is copyrighted software. Please see page 34 for terms and conditions.

65C816 STRING MANIPULATION LIBRARY V3

Page 2 of 34

When m=0.
1

16 bits when x=0.
2

GENERAL INFORMATION

Font changes are used to highlight specific aspects of the text. The main text is CG Times Roman.
Alternate fonts are:

! Section headings: Helvetica bold.

! Subsection headings: Helvetica.

! Code examples: Monospace.

! Code elements in text: Monospace, for example, S1.

! Important points: CG Times italic, CG Times bold or CG Times bold italic.

References to 65C816 registers are:

SYMBOL REGISTER SIZE IN BITS

.A primary accumulator 8

.B secondary accumulator 8

.C accumulator 161 1

.X X-index 8 or 162

.Y Y-index 8 or 162

DB Data bank 8

DP Direct page pointer 16

PB Program bank 8

PC Program counter 16

SP Stack pointer 16

SR Status register 8

m Accumulator/memory size 1

x Index register size 1

Page 3 of 34

Note that m and x represent the two bits in SR that determine the accumulator and index register
sizes.

The following abbreviations will be used to refer to some data elements:

! LSB Least-significant byte, used in reference to a 16-bit quantity.

! LSW Least-significant word, used in reference to a 32-bit quantity, e.g., a pointer to an
object.

! MSB Most-significant byte, used in reference to a 16-bit quantity.

! MSW Most-significant word, used in reference to a 32-bit quantity.

Page 4 of 34

LIBRARY FUNCTIONS and DISTRIBUTION FILES

The following functions are implemented in this library:

! strcat Concatenate two strings.

! strchr Find a byte in a string.

! strcmp Compare strings.

! strcpy Copy a string to a string.

! strdel Delete a substring from a string.

! strins Insert a substring into a string.

! strlen Return the size of a string.

! strpad Copy, justify and pad a string.

! strpat Pattern-match strings using wildcards.

! strstr Find a substring in a string.

! strsub Extract a substring from a string.

! strsws Strip leading and/or trailing whitespace from a string.

This distribution contains the following files:

! libstr30c.asm

 libstr30c.asm contains the source code that implements the various functions in the
library. The source code was developed in Michal Kowalski’s 6502 editor/assembler, as
enhanced by Daryl Rictor to support the 65C816 assembly language. The assembler version
should be at least 1.3.4 to avoid compatibility problems. The enhanced Kowalski assembler
may be downloaded from Daryl’s website at http://sbc.rictor.org/kowalski.html. Adapting the
source code to other 65C816 assemblers will vary in difficulty. The target assembler must
be able to support local labels and symbols, as well as assembly variables.

! stringmacs.asm

 stringmacs.asm contains macros that may be used in your programs to invoke the various
functions supported by libstr30.asm using a higher-level syntax than what is required to
directly call the library functions in “raw” assembly language. These macros use a syntax
that resembles that of string manipulation functions found in a typical ANSI C library, along
with means to tell the macro from where to get pointer data. Comments in libstr30.asm
explain the details.

Page 5 of 34

stringmacs.asm also defines some values that may be used in macro invocations or their
assembly language equivalents, thus discouraging the embedding of “magic numbers” into
your code. These values will be mentioned when appropriate.

Use of stringmacs.com is optional but recommended in programs that make a lot of
library calls.

! libstrjt.asm

libstrjt.asm contains a set of equates that point to the vector table in libstr30.asm
after it has been assembled. Including libstrjt.asm with your programs is recommended
if the library has been assembled as a relocatable standalone binary.

! README.pdf

This document. Please advise us if you find any errors.

Page 6 of 34

PROGRAMMING INFORMATION

The following general information will assist you in integrating this library in your programs.

! This library processes ANSI C-style character strings. Such strings consist of a
contiguous series of non-null bytes followed by a null ($00) byte. For example, the string
ABCDE will appear in a hexadecimal memory dump as:

41 42 43 44 45 00

ABCDE is referred to as the “text field,” even if it contains one or more non-printable bytes.
A string’s storage size is the text field size plus one byte. Where “size” is used in reference
to a string it will refer only to the text field size. A string can be null, in which case only the
null terminator will be present.

! The maximum allowable string size is 32,767 ($7FFF) bytes. This size limit does not
include the null terminator. Functions will terminate with an error if this limit is violated.
A size error will also occur if the combined length of two strings submitted to functions such
as strcat and strins exceeds the 32,767 byte limit.

! All library functions are structured as subroutines. During assembly of the library,
conditional code makes it possible to assemble the library so “near” (JSR-RTS) or “far”
(JSL-RTL) subroutine calls may be made. Near calls are practical if the library and the
programs that use it are loaded into the same bank.

Near calls will offer a small performance advantage when compared to the use of far calls.
That said, assembling the source code to use far calls will permit loading the library into any
bank at almost any address and calling library functions from any other bank.

! Library object code is fully relocatable. The library may be assembled with a starting
address of $000000 and subsequently loaded almost anywhere without any need to adjust
branch and jump targets, or static references. Use of the vector table at the beginning of the
libstr30c.asm source file means your program will only need to know the 24-bit load
address of the library binary to call its functions (see also libstrjt.asm).

NOTE: Library object code cannot span banks, a restriction imposed by the 65C816’s
architecture, not by the library itself.

! Function call parameters are passed via a stack frame. Each library function has specific
stack frame requirements, which will be described in detail. Before control is returned to the
calling program, the function will perform stack housekeeping, in which temporary workspace
and the parameter stack frame will be discarded.

Page 7 of 34

In other words, each library function will “rebalance the stack” upon exit and the calling
program will not need to concern itself with stack housekeeping after calling a function.

WARNING! An improperly structured stack frame resulting from pushing an incorrect
number of parameters or parameters of a wrong size will result in an
unbalanced stack when a function terminates, likely causing system
fatality. This class of error is avoidable by using the string macros to call
functions.

! Function parameters consist of pointers and values. A pointer is the address of an
“object” that is to be manipulated by or used by the function being called, an object being a
string, numeric quantity, etc. A “value” is a datum needed by the function in order to
determine how to process an object.

" A pointer is passed as a little-endian, double word—a DWORD, which is a 32-bit
quantity. As the 65C816 cannot natively handle a DWORD, it is necessary to split a
DWORD pointer into two WORDs (16-bit, little-endian quantities) and sequentially push
them to the stack. A method of doing so in the Kowalski assembler is:

PEA #ADDR >> 16 ;pointer to ADDR MSW
PEA #ADDR & $FFFF ;pointer to ADDR LSW

In the above, ADDR is the address of an object that will be known at assembly time. The
expression >> 16 is notation telling the assembler to right-shift ADDR’s value 16 bits,
hence assembling the instruction with bits 16-31 of ADDR as the operand. The expression
& $FFFF is telling the assembler to mask bits 16-31 of ADDR, hence assembling the
instruction with bits 0-15 of ADDR as the operand.

Note the order in which the pointer WORDs are pushed: it is always MSW first, LSW
second. Reversing the word order will create an insidious bug. The PEA instruction
pushes the constituent bytes of a WORD in the proper order.

Unless used in self-modifying code, the PEA instruction can only push static data, which,
in practice, limits its utility to cases in which items to be pushed are known at assembly
time. If an address will be computed as the program is running and can be subsequently
stored on direct page, you can use the PEI instruction to push it—this case would also
apply to values already located on direct page.

For example, if a computed address has been stored at DPPTR, DPPTR being the start
of four contiguous bytes on direct page, the following code would push the address to the
stack in the correct order, thus generating the required 32-bit, little-endian pointer:

Page 8 of 34

PEI DPPTR+2 ;push MSW
PEI DPPTR ;push LSW

The above is an example of “far” addressing, which would be used if the object is not
in the same bank as the string library. Again, note the order: MSW followed by LSW.
Also, note that DPPTR+3, which is the MSB of the MSW, must always contain $00—no
address in a 65C816 system will ever be larger than $00FFFFFF. Failure to observe
this requirement may trigger internal errors in functions that carry out pointer arithmetic
as they execute.

If an object is in the same bank as that in which the library is running, it is possible to
use the PER instruction to push the object’s address, a capability that may be useful when
a program’s storage references could change due to a relocating load. We refer to this
method as “near” addressing. The syntax to do so would be:

PEA #<bank> ;push dummy MSW
PER ADDR ;push object address LSW

In the above, <bank> would be the bank that is common to both the library and the
object to be processed. As PEA always pushes a WORD, the MSB of <bank> should be
$00.

An alternative to hard-coding the bank into an instruction is to determine the program’s
execution bank at run time and store it on direct page as a WORD for later use in making
“near” calls. For example:

REP #%00100000 ;16-bit accumulator
PHK ;push program bank...
PHK ;twice
PLA ;load into .C
AND #%11111111 ;mask .B
STA PRGBANK ;save bank on direct page

Later on, to call a function, code such as the following would be used to pass a “near”
object’s address:

PEI PRGBANK ;push execution bank
PEA ADDR ;push object address LSW

An alternative to one of the above stack-priming methods is to load the 65C816’s
registers with the appropriate parameters and push them. For example, the following
code fragment (in the Kowalski assembler) uses .X and .Y to prime the stack with the
address of ADDR:

Page 9 of 34

REP #%00010000 ;16-bit index registers
LDX !#ADDR & $FFFF ;address LSW into .X
LDY !#ADDR >> 16 ;address MSW into .Y
PHY ;push MSW
PHX ;push LSW

In the Kowalski assembler, the !# addressing mode will result in a 16-bit, immediate-
mode operand being generated for the two load instructions. Use of # alone will result
in an 8-bit operand being assembled if an operand expression resolves to less than
$0100. Incidentally, the above sequence is an analog of the earlier example of using
PEA to prime the stack—but less efficient.

If a computed address is not on direct page then it isn’t possible to use PEI. In such a
case, it will be necessary to load the registers from the location containing the computed
address and push them, e.g.:

REP #%00010000 ;16-bit index registers
LDX ADDR_LOC ;computed address LSW into .X
LDY ADDR_LOC+2 ;computed address MSW into .Y
PHY ;push MSW
PHX ;push LSW

In the above example, it is assumed the computed address is stored at ADDR_LOC in
little-endian order, with ADDR_LOC+3 containing $00. At the risk of being annoyingly
repetitious, again note the order in which items are pushed.

Regardless of the method chosen, the goal is to generate a stack frame that is suitable for
the function being called. Use the method that is most efficient and practical in your
program, but avoid making it complicated. If you do have to engage in complexity be
sure to thoroughly comment your code.

" A value is passed as a WORD. This rule applies even if the value is a character. As with
pushing a pointer, you may use PEA to push a WORD whose quantity will be known at
assembly time, PEI to push a WORD stored on direct page, or a register to fetch and push
a WORD that has been stored in absolute memory. If a value is to be pushed one byte at
a time, be sure to push the MSB first, followed by the LSB. Reversing the byte order
will create an insidious bug.

In function descriptions, the difference between a pointer and a value should be clear from
syntax. For example, the call to the strpad function take both pointers and values. The
form of the call (using a macro) is:

strpad *S1,*S2,*L,J,FB

Page 10 of 34

S1, S2 and L are pointers—so-indicated by the * prefixing the variable name (do not,
however, use * with the pointer name in the macro invocation), whereas J and FB are values.

Lastly, when a description says a parameter is an integer it means the parameter is a 16-bit,
unsigned, little-endian quantity, that is, a WORD. For example, the value 15 passed as an
integer would be seen in memory as 0F 00.

! Some functions will call for an index into a string. An index is always zero-based and is
always a word.

! Functions strive to be as transparent as possible. Unless a function returns data to the
caller, the accumulator’s and index registers’ content and size will be preserved. Bits in SR
other than carry will be preserved as well, except in a few cases. Registers that are
guaranteed to be preserved are DB, DP, PB and SP. Refer to each function’s description for
more information.

! All function calls must be tested for an error upon return. If an error occurs, the function
will return with the carry bit set in SR. If a function that would normally return data in one
or more registers exits with an error, such registers will be unchanged from when the function
was called. Each function’s description will list the possible causes of an error.

! Some functions will expand S1 (string #1) during processing. Such expansion could lead
to a buffer overflow error if S1 has not been allocated sufficient memory. Library functions
assume S1’s buffer is of adequate size—it is the calling function’s responsibility to allocate
and manage storage.

! The local operating system’s interrupt service routines (ISR) must fully preserve the
65C816’s state. All library functions allocate workspace on the stack and temporarily
relocate direct page to that workspace as they run. Also, all functions use the MVP block-copy
instruction to perform stack housekeeping before exit. It is imperative that ISRs fully
preserve the microprocessor state and, if necessary, change DP to point to the ISR’s notion
of where direct page is located.

WARNING! Sloppy ISR design will likely cause system fatality if a library function
is interrupted. Your ISR should make NO ASSUMPTIONS about the
microprocessor’s state at the time of an interrupt’s occurrence.

If you are interested in learning more about interrupt service routine design for 65C816
systems you can find reference material at http://sbc.steggy.net/65c816interrupts.html.

Page 11 of 34

ASSEMBLING THE LIBRARY

The following procedure describes how to assemble the library as a standalone utility using the
Kowalski assembler. If you are using some other assembler your procedure will likely vary in
some ways.

1. Load the libstr30c.asm source file into the Kowalski editor. Other than the edits
described below, avoid changing anything in the source code. We recommend you make a
backup copy of libstr30c.asm before proceeding.

2. Uncomment the following line of code:

.org $000000

If necessary, change $000000 to the desired assembly address. As the binary resulting from
assembly will be full relocatable, the $000000 address may be left as is and instead, a
relocating load may be performed on the target system if such a capability exists.

3. If you plan to be able to load the libstr30c binary to an arbitrary bank in your system, the
source code must be assembled with “far” calls enabled. In such a case, uncomment the
following line of code, which is immediately below the .org $000000 line described in
step 2 above:

;_STRLIB_ ;uncomment for "far" calls

Do not edit the line, other than to uncomment it. With “far” calls enabled, all calls to the
library must be with JSL, not JSR.

4. Strike [F7] to assemble the source code.

5. Strike [Ctrl-K] to save the object code to a file. When prompted, select the desired file type
prior to saving. For transporting object code to your target 65C816 system via a TIA-232
serial link, it is suggested you select Motorola S-record or Intel hex format. If you wish to
save the object code as a binary file, click the [Options] button in the Save dialog and set the
proper address range. By default, the Kowalski assembler will save the entire 64 KB address
space if a range is not set.

6. Transport your object code to your target 65C816 system. If you have assembled
libstr30c to address $000000 it will be necessary to perform a relocating load on your
target system. If your system includes mass storage, save the loaded object code to a file.
The library is ready for use.

Page 12 of 34

7. In any program that will call library functions, you will need to include the libstrjt.asm
source file so as to define the libstr30c vector table. libstrjt.asm contains a series
of equate statements, the first of which is:

libstr30 =$000000 ;library vector table base

Edit the above statement so the $000000 address conforms to the address to which the
libstr30c binary will be loaded at run time. DO NOT edit anything else in the file.

NOTE: If the libstr30c binary’s load address will not be known at assembly time, you
will have to devise some other means of informing your programs of the load
address. In such case, leave the base address set to $000000.

8. If your program will be using the string macro definitions in stringmacs.asm, include
that file early in the assembly chain for your program. Macros must be defined before any
statements that use the macros can be assembled.

Macros will need to know if library functions are to be accessed with near or far calls. See
step 3, above.

The following procedure describes how to make the library an integral part your finished software.
If you are using some other assembler, your procedure will likely vary in some ways.

1. If your program will be using the macro definitions in stringmacs.asm, include that file
early in the assembly chain. Macros must be defined before any statements that use the
macros can be assembled.

2. Include libstr30c.asm at any convenient point in your source file. Do not edit anything
in libstr30c.asm. As the library will be part of your program once assembly is
complete, do not enable far calls, as was described in step 3 in the previous section. All
library functions will be called with JSR.

Some experimentation may be required to determine at what point in your source code
libstr30c.asm is to be included to avoid possible forward reference areas. Generally
speaking, adding libraries after the code segments that call them is a good practice.

3. Add code as necessary in your program where library calls are to be made. Use of macros
is recommended where possible.

Page 13 of 34

FUNCTION DESCRIPTIONS

In the following text, each function description will start with the macro call syntax for the
function—macro and function names are lower case, explain what the function does, describe any
special processing cases that must be considered, and then finish with the assembly language call
syntax (“synopsis”) applicable to the function, followed by a list of register returns. Examples
will use JSR to call functions. If you are assembling with “far” calls enabled you should
substitute JSL.

Strings are referred to as S in the descriptions for functions that work with a single string, or S1
and S2 in functions that work with two strings, excepting strpat, which refers to the strings as
S and P. Other parameter references will be explained as needed.

In narrative, typical notation regarding function parameters will be as follows:

*S1 A pointer to object S1.

S1 The content of object S1.

siz(S1) Object S1’s size.

siz(S1+S2) S1’s and S2’s combined size.

Page 14 of 34

! strcat *S1,*S2

strcat catenates string S2 to string S1. The operation may be characterized as
S1=S1+S2. If *S1 and *S2 both point to the same string, the result will be S1=S1+S1.
If *S2 points to somewhere within S1, results are undefined.

Prior to calling this function, the parameter stack frame must be as follows:

SP+5 ÷ *S2
SP+1 ÷ *S1

Upon return, carry will be set if any of the following is true:

siz(S1) > 32,767
siz(S2) > 32,767
siz(S1+S2) > 32,767

Assembly language synopsis:

PEA #S2_PTR >> 16 ;*S2 MSW
PEA #S2_PTR & $FFFF ;*S2 LSW
PEA #S1_PTR >> 16 ;*S1 MSW
PEA #S1_PTR & $FFFF ;*S1 LSW
JSR strcat
BCS ERROR

Exit register values:

.A: entry value

.B: entry value

.X: entry value

.Y: entry value
DB: entry value
DP: entry value
PB: entry value
SR: nvmxdizc

 *******.)))> 0: okay
 ******* 1: error
 .222222))))> entry value

Page 15 of 34

! strchr *S,*C

strchr searches S for the first occurrence of the byte C and if found, returns a zero-based
index to C’s position in S, as well as the number of instances of C in S. Note that *C points
to a single byte in memory, not a character string.

Prior to calling this function, the parameter stack frame must be as follows:

SP+5 ÷ *C
SP+1 ÷ *S

Upon return, carry will be set if the following is true:

siz(S) > 32,767

Assembly language synopsis:

PEA #C_PTR >> 16 ;*C MSW
PEA #C_PTR & $FFFF ;*C LSW
PEA #S_PTR >> 16 ;*S MSW
PEA #S_PTR & $FFFF ;*S LSW
JSR strchr
BCS ERROR

Exit register values:

.A: entry value

.B: entry value

.X: instances of C in S1,2

.Y: index to 1st C instance1,2

DB: entry value
DP: entry value
PB: entry value
SR: nvmxdizc

 *******.)))> 0: okay
 ******* 1: error
 ****.22))))> entry value
 ***.)))))))> 02

 .22))))))))> entry value

1) $0000 if C was not found in S.
2) Entry value if function returns an error.

Page 16 of 34

! strcmp *S1,*S2

strcmp compares string S2 to string S1. Comparison is based upon the binary values of
the strings’ text field bytes, as well as the respective text field sizes. The results of
comparison are returned in SR and as follows:

z n Meaning
—————————————
1 X S2 = S1
0 0 S2 > S1
0 1 S2 < S1
—————————————

In the above table, X means “don't care.” If S1 and S2 are both null, or if *S1 and *S2
point to the same string, the result will be S2=S1.

Prior to calling this function, the parameter stack frame must be as follows:

SP+5 ÷ *S2
SP+1 ÷ *S1

Upon return, carry will be set if any of the following is true:

siz(S1) > 32,767
siz(S2) > 32,767

Assembly language synopsis:

PEA #S2_PTR >> 16 ;*S2 MSW
PEA #S2_PTR & $FFFF ;*S2 LSW
PEA #S1_PTR >> 16 ;*S1 MSW
PEA #S1_PTR & $FFFF ;*S1 LSW
JSR strcmp
BCS ERROR

BMI LESSER ;S2 < S1
BEQ EQUAL ;S2 = S1
BPL GREATER ;S2 > S1

Page 17 of 34

Exit register values:

.A: entry value

.B: entry value

.X: entry value

.Y: entry value
DB: entry value
DP: entry value
PB: entry value
SR: nvmxdizc

 *******.)))> 0: okay
 ******* 1: error
 ******.))))> 0: S2 != S11

 ****** 1: S2 = S11

 *.2222)))))> entry value
 .))))))))))> 0: S2 < S11

 1: S2 >= S11

1) Entry value if function returns an error.

Page 18 of 34

! strcpy *S1,*S2

strcpy copies S2 to S1, overwriting S1 with S2. If *S1 and *S2 point to the same string
no operation will be performed and no error will occur. If *S2 points to somewhere within
S1, results are undefined.

Prior to calling this function, the parameter stack frame must be as follows:

SP+5 ÷ *S2
SP+1 ÷ *S1

Upon return, carry will be set if the following is true:

siz(S2) > 32,767

Assembly language synopsis:

PEA #S2_PTR >> 16 ;*S2 MSW
PEA #S2_PTR & $FFFF ;*S2 LSW
PEA #S1_PTR >> 16 ;*S1 MSW
PEA #S1_PTR & $FFFF ;*S1 LSW
JSR strcpy
BCS ERROR

Exit register values:

.A: entry value

.B: entry value

.X: entry value

.Y: entry value
DB: entry value
DP: entry value
PB: entry value
SR: nvmxdizc

 *******.)))> 0: okay
 ******* 1: error
 .222222))))> entry value

Page 19 of 34

! strdel *S,*I,*N

strdel deletes a substring from string S. The beginning of the substring to be deleted is
defined by index I. The size of the substring to be deleted is defined by N.

" I is an integer and may be any quantity. However, if I>=siz(S), no operation will
be performed and no error will occur.

" N is an integer and may be any quantity. However, if N=0, no operation will be
performed and no error will occur.

" If siz(S)=0, no operation will be performed and no error will occur.

" If (I+N)<siz(S) is true, N bytes will be logically removed from S starting at byte I,
and the remainder of the string will be shifted to “close the gap.” Memory previously
occupied by the remainder of the string will contain “garbage.”

" If (I+N)>=siz(S) is true, S will be truncated to I bytes. Memory previously
occupied by the remainder of the string will contain “garbage.”

Prior to calling this function, the parameter stack frame must be as follows:

SP+9 ÷ *N
SP+5 ÷ *I
SP+1 ÷ *S

Upon return, carry will be set if the following is true:

siz(S) > 32,767

Assembly language synopsis:

PEA #N_PTR >> 16 ;*N MSW
PEA #N_PTR & $FFFF ;*N LSW
PEA #I_PTR >> 16 ;*I MSW
PEA #I_PTR & $FFFF ;*I LSW
PEA #S_PTR >> 16 ;*S MSW
PEA #S_PTR & $FFFF ;*S LSW
JSR strdel
BCS ERROR

Page 20 of 34

Exit register values:

.A: entry value

.B: entry value

.X: entry value

.Y: entry value
DB: entry value
DP: entry value
PB: entry value
SR: nvmxdizc

 *******.)))> 0: okay
 ******* 1: error
 .222222))))> entry value

Page 21 of 34

! strins *S1,*S2,*I

strins inserts string S2 into string S1. The point of insertion is defined by zero-based
index I. S1 will expand in size by the size of S2. If *S2 points to somewhere within S1,
results are undefined.

" I is an integer and may be any quantity. However, if I>=siz(S1) is true, no
operation will be performed and no error will occur.

" If siz(S1)=0, no operation will be performed and no error will occur. In such a case,
the strcpy function should be used to copy S2 to S1.

" If siz(S2)=0, no operation will be performed and no error will occur.

" If *S1 and *S2 point to the same string, no operation will be performed and no error
will occur.

Prior to calling this function, the parameter stack frame must be as follows:

SP+9 ÷ *I
SP+5 ÷ *S2
SP+1 ÷ *S1

Upon return, carry will be set if any of the following is true:

siz(S1) > 32,767
siz(S2) > 32,767
siz(S1+S2) > 32,767

Assembly language synopsis:

PEA #I_PTR >> 16 ;*I MSW
PEA #I_PTR & $FFFF ;*I LSW
PEA #S2_PTR >> 16 ;*S2 MSW
PEA #S2_PTR & $FFFF ;*S2 LSW
PEA #S1_PTR >> 16 ;*S1 MSW
PEA #S1_PTR & $FFFF ;*S1 LSW
JSR strins
BCS ERROR

Page 22 of 34

Exit register values:

.A: entry value

.B: entry value

.X: entry value

.Y: entry value
DB: entry value
DP: entry value
PB: entry value
SR: nvmxdizc

 *******.)))> 0: okay
 ******* 1: error
 .222222))))> entry value

Page 23 of 34

! strlen *S

strlen reports siz(S).

Prior to calling this function, the parameter stack frame must be as follows:

SP+1 ÷ *S

Upon return, carry will be set if the following is true:

siz(S) > 32,767

Assembly language synopsis:

PEA #S_PTR >> 16 ;*S MSW
PEA #S_PTR & $FFFF ;*S LSW
JSR strlen
BCS ERROR

Exit register values:

.C: siz(S)1

.X: entry value

.Y: entry value
DB: entry value
DP: entry value
PB: entry value
SR: nvmxdizc

 *******.)))> 0: okay
 ******* 1: error
 ******.))))> 0: siz(S) > 01

 ****** 1: siz(S) = 01

 ***.22)))))> entry value
 **.))))))))> 01

 .2)))))))))> entry value

1) Entry value if function returns an error.

Page 24 of 34

! strpad *S1,*S2,*L,J,FB

strpad copies string S2 to S1 and then modifies S1 according to L, J and FB.

" *L points to an integer that determines the final size of S1. L’s effect is as follows:

L<siz(S2): S1 will be a truncated copy of S2.

L=siz(S2): S1 will be an exact copy of S2.

L>siz(S2): S1 will be a padded copy of S2. The value passed as FB will be used as
the padding byte (see below).

The permissible range for L is 0 to 32,767 inclusive. If L=0 then S1 will be a null
string.

" J is a value that specifies how S1 is to be justified if padding is required to achieve size
L. J will have no effect if siz(S2)>=L is true. Behavior is as follows:

J=0: S1 will be justified left. For example, if S2="ABC", L=7, J=0 and FB=$2A
(FB is described below) then S1 will be "ABC****". If stringmacs.asm has
been assembled in your program, the symbol _JUSTLFT may be used to represent
J.

J=1: S1 will be justified right. For example, if S2="ABC", L=7, J=1 and FB=$2A
then S1 will be "****ABC". If stringmacs.asm has been assembled in your
program, the symbol _JUSTRIT may be used to represent J.

J=2: S1 will be centered. For example, if S2="ABC", L=7, J=2 and FB=$2A then
S1 will be "**ABC**". If stringmacs.asm has been assembled in your
program, the symbol _JUSTCTR may be used to represent J.

Any other J value will be treated as J=0. J will be ignored if siz(S2)>=L is true.

" FB is a value that will be used as the fill byte if padding is applied to S1. If FB is a null
($00) an ASCII blank ($20) will be substituted. Caution should be exercised in using
an FB value that is outside of the printable ASCII range if S1 is to be displayed on a
screen or printer. FB will be ignored if siz(S2)>=L is true.

" If *S1 and *S2 point to the same string, no operation will be performed and no error
will occur. If *S2 points to somewhere within S1, results are undefined.

Page 25 of 34

Prior to calling this function, the parameter stack frame must be as follows:

SP+15 ÷ FB
SP+13 ÷ J
SP+9 ÷ *L
SP+5 ÷ *S2
SP+1 ÷ *S1

Upon return, carry will be set if any of the following is true:

siz(S2) > 32,767
L > 32,767

Assembly language synopsis:

PEA #FB ;padding (fill) byte
PEA #J ;_JUSTLFT | _JUSTRIT | _JUSTCTR
PEA #I_PTR >> 16 ;*L MSW
PEA #I_PTR & $FFFF ;*L LSW
PEA #S2_PTR >> 16 ;*S2 MSW
PEA #S2_PTR & $FFFF ;*S2 LSW
PEA #S1_PTR >> 16 ;*S1 MSW
PEA #S1_PTR & $FFFF ;*S1 LSW
JSR strpad
BCS ERROR

Exit register values:

.A: entry value

.B: entry value

.X: entry value

.Y: entry value
DB: entry value
DP: entry value
PB: entry value
SR: nvmxdizc

 *******.)))> 0: okay
 ******* 1: error
 .222222))))> entry value

Page 26 of 34

! strpat *S,*P

strpat compares string P, a “pattern,” to string S and returns the Boolean results LIKE
or UNLIKE. A return of LIKE means the pattern was found in S. The presence of the
metacharacters ? (character wildcard) and * (string wildcard) in P will affect the outcome of
the comparison. Pattern matching behaves as follows:

? When present in P, a character wildcard will match exactly one character in S. For
example, fo?bar will match foobar, foObar, forbar, etc. ???? will match S if
S is exactly four bytes in size, with the bytes in S being anything, including ????.

* When present in P, a string wildcard will match a sequence of bytes in S. For
example, ab* will match anything that begins with ab, such as abcde or
abracadabra. *yz will match anything that ends with yz, such as abcxyz. *lm*
will produce a match if S’s text field contains lm. ab*lm*yz will produce a match if
S’s text field begins with ab, has lm anywhere in the middle, and ends with yz.

Combinations of wildcards in P may be used in various ways. For example, ?* will match
S if it is non-null. Similarly, ???* will match if S is three or more bytes in size, as would
???. The somewhat strange pattern ?????? would match S if the latter contains at least
six bytes.

The special case of * being the only byte in P will match with anything, even a null string.
If P consists solely of multiple * bytes, such as ***, strpat will treat them as a single
instance of *. Similarly, ab***yz will be logically reduced to ab*yz. If P has no
wildcards, strpat will act in a similar fashion to the strcmp function, but with slower
execution and without the “lesser-than” and “greater-than” results of strcmp.

The comparison result is indicated by the microprocessor’s z flag as follows:

z Meaning
—————————————
1 P LIKE S
0 P UNLIKE S
—————————————

Prior to calling this function, the parameter stack frame must be as follows:

SP+5 ÷ *P
SP+1 ÷ *S

Page 27 of 34

Upon return, carry will be set if any of the following is true:

siz(S) > 32,767
siz(P) > 32,767

Assembly language synopsis:

PEA #P_PTR >> 16 ;*P MSW
PEA #P_PTR & $FFFF ;*P LSW
PEA #S_PTR >> 16 ;*S MSW
PEA #S_PTR & $FFFF ;*S LSW
JSR strpat
BCS ERROR

BEQ LIKE ;S is LIKE P
BNE UNLIKE ;S is UNLIKE P

Exit register values:

.A: entry value

.B: entry value

.X: entry value

.Y: entry value
DB: entry value
DP: entry value
PB: entry value
SR: nvmxdizc

 *******.)))> 0: okay
 ******* 1: error
 ******.))))> 0: S UNLIKE P1

 ****** 1: S LIKE P1

 .22222)))))> entry value

1) Entry value if function returns an error.

Page 28 of 34

! strstr *S1,*S2

strstr searches string S1 for string S2 and if found, returns both a zero-based index and
a pointer to where S2 was encountered in S1. The z bit in SR is used to indicate if S2 was
found in S1—refer to the assembly language synopsis for details. “Not found” status will be
returned if either string is null. If *S2 points to anywhere within S1, a “found” status will
be returned.

Prior to calling this function, the parameter stack frame must be as follows:

SP+5 ÷ *S2
SP+1 ÷ *S1

Upon return, carry will be set if any of the following is true:

siz(S1) > 32,767
siz(S2) > 32,767

Assembly language synopsis:

PEA #S2_PTR >> 16 ;*S2 MSW
PEA #S2_PTR & $FFFF ;*S2 LSW
PEA #S1_PTR >> 16 ;*S1 MSW
PEA #S1_PTR & $FFFF ;*S1 LSW
JSR strstr
BCS ERROR

BEQ FOUND ;S2 found in S1
BNE NOTFOUND ;S2 not found in S1

Exit register values (next page):

Page 29 of 34

.C: index to S2's location in S11,2

.X: pointer to S2's location in S1 LSW1,2

.Y: pointer to S2's location in S1 MSW1,2

DB: entry value
DP: entry value
PB: entry value
SR: nvmxdizc

 *******.)))> 0: okay
 ******* 1: error
 ******.))))> 0: S2 not found in S11

 ****** 1: S2 found in S11

 ****.2)))))> entry value
 **.2)))))))> 01

 .2)))))))))> entry value

1) Entry value if function returns an error.
2) $0000 if S2 was not found in S1.

Page 30 of 34

! strsub *S1,*S2,*I,*N

strsub copies a substring from S2 to S1, overwriting S1. If *S2 and *S1 point to the
same string, no operation will be performed and no error will occur. If *S2 points to
somewhere within S1, results are undefined.

" I is the starting index into S2. If I>=siz(S2)is true, no operation will be performed
and no error will occur.

" N is the maximum number of bytes to be copied from S2. If N=0, no operation will be
performed and no error will occur.

" If (I+N)<siz(S2) is true, N bytes will be copied from S2 starting at byte I in S2.

" If N>0 and (I+N)>=siz(S) is true, siz(S2)-I bytes will be copied from S2 starting
at byte I.

" If siz(S2)=0, no operation will be performed and no error will occur.

Prior to calling this function, the parameter stack frame must be as follows:

sp+13 ÷ *N
SP+9 ÷ *I
SP+5 ÷ *S2
SP+1 ÷ *S1

Upon return, carry will be set if the following is true:

siz(S2) > 32,767

Assembly language synopsis:

PEA #N_PTR >> 16 ;*N MSW
PEA #N_PTR & $FFFF ;*N LSW
PEA #I_PTR >> 16 ;*I MSW
PEA #I_PTR & $FFFF ;*I LSW
PEA #S2_PTR >> 16 ;*S2 MSW
PEA #S2_PTR & $FFFF ;*S2 LSW
PEA #S1_PTR >> 16 ;*S1 MSW
PEA #S1_PTR & $FFFF ;*S1 LSW
JSR strsub
BCS ERROR

Page 31 of 34

Exit register values:

.A: entry value

.B: entry value

.X: entry value

.Y: entry value
DB: entry value
DP: entry value
PB: entry value
SR: nvmxdizc

 *******.)))> 0: okay
 ******* 1: error
 .222222))))> entry value

Page 32 of 34

! strsws *S,OP

strsws strips “white space” from string S, according to the operation defined by OP.
“White space” refers to leading and/or trailing blanks (ASCII 32) and/or horizontal tabs
(ASCII 9) that are part of S, e.g., " ABCDE ".

" OP, which is a bit-wise value, defines the operation to be performed:

xx000000
**

*.)))))))))> 1: strip leading whitespace
.))))))))))> 1: strip trailing whitespace

Both operations may be performed in a single call.

" If siz(S)=0, no operation will be performed and no error will occur.

Prior to calling this function, the parameter stack frame must be as follows:

SP+5 ÷ OP
SP+1 ÷ *S1

Upon return, carry will be set if the following is true:

siz(S) > 32,767

Assembly language synopsis:

PEA #OP ;OP
PEA #S_PTR >> 16 ;*S MSW
PEA #S_PTR & $FFFF ;*S LSW
JSR strsws
BCS ERROR

Exit register values are on the next page:

Page 33 of 34

.A: entry value

.B: entry value

.X: entry value

.Y: entry value
DB: entry value
DP: entry value
PB: entry value
SR: nvmxdizc

 *******.)))> 0: okay
 ******* 1: error
 .222222))))> entry value

Page 34 of 34

BDD: 2024/01/11

65C816 STRING MANIPULATION LIBRARY V3 copyrighted ©2015 by William J Brier
))

Redistribution and use of this software in source and/or binary forms, with or without modification, are
permitted, provided the following terms and conditions are met:

1) Redistributions of source code must retain the above copyright notice, this list of conditions and the below
disclaimer.

2) Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the below
disclaimer in the documentation and other materials included with the distribution.

3) The names of the copyright holder and/or its contributors may not be used to endorse or promote products
derived from this software without specific, prior written permission.

DISCLAIMER

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS and CONTRIBUTORS “AS IS”. Any
express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose, are disclaimed. In no event shall the copyright holder and/or contributors be
liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but
not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort
(including negligence or otherwise) arising in any way out of the use of this software, even if advised
of the possibility of such damage.

If any provision set forth herein is not acceptable to you, DO NOT USE THIS SOFTWARE and
immediately delete it from your system.
)))

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34

